
Giuseppe Bianchi

Portable Platform-agnostic

programming of Wireless MAC

protocols
Giuseppe Bianchi, CNIT / University of Roma Tor Vergata

Joint work with: I. Tinnirello, N. Facchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli

Supported by:

EU FP7-FLAVIA STREP project

EU FP7-CREW FIRE project

Giuseppe Bianchi

Our vision:

Context-specific MAC protocol

(dynamically installed at run-time)

Hello, may I associate?

[using a legacy protocol, e.g. DCF]

Giuseppe Bianchi

Our vision:

Context-specific MAC protocol

(dynamically installed at run-time)

Please Install this radio protocol

stack

Giuseppe Bianchi

Our vision:

Context-specific MAC protocol

(dynamically installed at run-time)

Whole radio protocol stack

as a sort of JAVA applet

Monitor and detect Context

changes (interf., traffic,

hidden nodes, neighbors, etc)

Here’s a new context specific

protocol stack! Let’s reconfigure

terminals to best fit

new condition

Giuseppe Bianchi

Motivation: one size does not fit all
different needs; many exploitation opportunities

Dynamic spectrum access
Very diverse situations (e.g. countries)

very diverse environmental conditions
» Dense/sparse, hidden terminals, legacy deployments, etc

Different propagation characteristics
» Sub-GHz, THz

Niche environments with specific needs
home, industrial, M2M, …

Adaptation to specific context or applications

Virtualization, access network sharing
Multi-tenancy

Multiple coexisting applications
» M2M and H2H over same access network…

And many more…

Giuseppe Bianchi

Rediscovering the wheel? We

do have SW defined radios!

from radios with behavior fixed in
hardware to radios with behavior
determined by software

20+ years long research path;
excellent technologies

E.g., restricting to research/academic platforms:
AirBlue, CalRadio, GNURadio, RUNIC, SORA,

USRP, WARP, …

Permit to SW program «almost everything»
Waveforms, PHY, MAC, etc

Giuseppe Bianchi

No: there is a serious concern!
Mostly neglected so far…

Different platforms/vendors = completely
different programming models and languages!

Either force ALL to use the same platform

Or port your protocol code for all possible platforms (a babel!)

Quoting C. Partridge, “realizing the future of
Wireless Data Communication”, Commun.
ACM, 2011 [talking about the transition from HW to SW
radio]:
… [we] are all imperfectly prepared to take advantage; research

on vital questions has been extremely variable, with wonderful work
(such as finding the right mix of programmable hardware to support
high performance signal processing in radios) undermined by
almost complete neglect - such as how to describe radio
behavior independent of platform […].

Giuseppe Bianchi

Our key idea: turn NIC into a

«wireless MAC processor»

Protocol

Control

TX FSM RX FSM

Lower MAC

PHY

API: MAC

programming

abstraction

MAC protocol Engine

TX RX

PHY

Other MAC

primitives Pre-implemented

Pre-implemented

Wireless Card Wireless MAC Processor!

Wireless MAC «program»,

user-written via a platform-

agnostic «language»

Giuseppe Bianchi

How to? mimic an ordinary

computing system!
 1: Instruction sets

perform elementary tasks on the platform
A-priori given by the platform

Can be VERY rich in special purpose computing platforms
» Crypto accelerators, GPUs, DSPs, etc

 2: Programming abstraction & languages
sequence of such instructions + conditions

 Convey desired platform’s operation or algorithm

 3: Central Processing Unit (CPU)
execute program over the platform

 Unaware of what the program specifically does

 Fetch/invoke instructions, update registers, etc

Clear decoupling between:

 - platform’s vendor  implements (closed source!) instruction set & CPU

 - programmer  produces SW code in given language

Giuseppe Bianchi

ACTIONS

 frame management, radio control, time scheduling
TX frame, set PHY params, RX frame,

set timer, freeze counter, build header,
forge frame, switch channel, etc

EVENTS

available HW/SW signals/interrupts
Busy channel signal, RX indication,

inqueued frame, end timer, etc

REGISTRY CONDITIONS

boolean/arithmetic tests on available registers/info
Frame address == X, queue length >0,

ACK received, power level < P, etc

1: Which elementary MAC tasks?
(“our” instruction set!)

Set of supported Action, Events, and conditions = MAC programming API!

Giuseppe Bianchi

Current API (version 2.0)

Giuseppe Bianchi

Convenient abstraction: XFSM
eXtended Finite State Machines

Compact way for composing available actions, events
and conditions, to form a custom MAC protocol logic

2: How to compose MAC tasks?
(“our” programming language!)

Origin

state
Destination

state
config action()

Destination

state

EVENT

(condition)

Action()

Destination

state

Giuseppe Bianchi

Actions:

set_timer, stop_timer,

set_backoff,

resume_backoff,

update_cw,

switch_TX, TX_start

Events:

END_TIMER,

QUEUE_OUT_UP,

CH_DOWN, CH_UP,

END_BK,

MED_DATA_CONF

Conditions:

medium, backoff,

queue

XFSM example: legacy DCF
simplified for graphical convenience

Giuseppe Bianchi

MAC engine: specialized XFSM executor
(unaware of MAC logic)

Fetch state

Receive events

Verify conditions

Perform actions and state transition

Once-for-all implemented in NIC
(no need for open source)

“close” to radio resources = straightforward real-time
handling

Different MAC protocol = different “XFSM program”!

3: How to run a MAC program?
(MAC engine – XFSM onboard executor - our CPU!)

Giuseppe Bianchi

Programming your MAC:

1- graphical XFSM editor

DCF example: define custom variables and state transitions with associated A/E/C

chosen among those provided by the API

Giuseppe Bianchi

2- transform XFSM in bytecode

MAC description:

XFSM

XFSM  tables

Transitions

 «byte»-code event, condition, action

Portable over different vendors’

devices, as long as API is the same!!

Pack & optimize in WMP «machine-

language» bytecode

A

C

B

T(A,B)

T(B,C)

T(C,A) T(C,B)

A
B
C

A B C

T(A,B)

T(B,C)

T(C,A) T(C,B)

A
B
C

MAC protocol specification:

XFSM design
(e.g. Eclipse GMF)

Machine-readable code

Custom language compiler

Code injection

in radio HW platform

MAC Engine

MAC Bytecode

Giuseppe Bianchi

Machine Language Bytecode Example
(DCF, 544 bytes)

Giuseppe Bianchi

3- upload «MAClet» on device

 Developed local control agents

 Can upload via PC interface or via packet (akin to active networks)

 Manages two state machines

 Can upload while another MAC is running

WMP Control
Primitives

 load(XFSM)

 run(XFSM)

 verify(XFSM)

 switch(XFSM1, XFSM2,
ev, cond)

 Further primitives

 Synchro support for
distributed start of same
MAC operation

 Distribution protocol

 “Bios” state machine: DEFAULT protocol (e.g. wifi) which all terminals understand

Giuseppe Bianchi

4- switch from «old» to «new» MAC
Permits MAC «multi-threading»!! Switching time = less than 0.2 us over cheap broadcom!

(plus channel switching time if required)

Giuseppe Bianchi

MAC protocols’ virtualization
time slicing of different MAC protocols on same device/channel

Time «slice» dedicated to OPA, best effort traffic  chooses DCF-like

trivial idea, isolation guaranteed, any (custom) MAC protocol in any tenant’ slice…

but today hard to implement (and non standard)

Time «slice» dedicated to OPA, guaranteed traffic  chooses TDM-like

Giuseppe Bianchi

Two proof of concept implementations

 Ultra-cheap commodity WLAN NIC:
Broadcom Airforce54g 4311/4318

 Implementation at a glance:

 Deleted original 802.11 firmware
 we do NOT want a “firmware MAC” to

hack!

 Replaced with [once for all developed in
assembly language]:
 Implementation of actions, events,

conditions (in part reusing existing HW
facilities)

 Implementation of a MAC engine (XFSM
executor)

PLATFORM OUR GOAL

 Show viability on commodity
HW cards with poor resources

 general purpose processor (88 MHz),

 4KB data memory

 32 KB code memory

 WARP SDR board

 Much more powerful

 Not easy: required to «clean» several
existing inter-dependencies among
primitives

 Paves the road towards future
PHY/MAC extensions

 Antenna control, OFDM, MIMO, etc

 Show portability of MAC programs

 With same API, MAC programs for Broadcom
perfectly install and run on WARP!!

Giuseppe Bianchi

SDN-like controller

(adapting the OMF framework)

Measurement process

Collects statistics for context estimation
Resource Controller

Manages device (load, control)

Experiment Controller

Network-wide orchestration

Giuseppe Bianchi

Public-domain
 Supported by the FLAVIA EU FP7 project

 http://www.ict-flavia.eu/

 Ongoing integration in the CREW EU FP7
federated testbed

 http://www.ict-flavia.eu/

 Public domain release

 Project page: http://wmp.tti.unipa.it

 Download: https://github.com/ict-flavia/Wireless-
MAC-Processor

 Released distribution:

 Binary image for WMP

 You DO NOT need it open source!
Remember the “hard-coded” device philosophy…
Conveniently mounted and run on Linksis or Alix

 Source code for everything else

 Manual & documentation, sample programs

http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor
https://github.com/ict-flavia/Wireless-MAC-Processor

Giuseppe Bianchi

Conclusions and Future steps

 Platform agnostic Wireless MAC protocol programming is
technically possible (and viable)

 Key insight: XFSM as MAC programming abstraction

 Decouples wireless innovation from their deployment

 Vendor’s role: improve wireless primitives implemented in the card

 Operator/deployer’s role: «use» primitives available to program the desired wireless
access operation

 Permits context-specific MAC protocols

 Upload at run time the «most appropriate» protocol for your specific environment

What about wireless PHY and cross-layer?

 Open challenge: programming PHY radio behavior using platform-agnostic
abstractions
XFSM appear not sufficient; must integrate DAGs?

